

FACTORIALS

81

Factorial of n or $n!$ is the product of all positive integers less than n . So $8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40,320$ and $11! = 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 39,916,800$

$$0! = 1$$

$$1! = 1$$

$$2! = 2$$

31-6

41 = 34

51 = 120 and so on

TRAILING ZEROS:

In mathematics, trailing zeros are a sequence of 0 in the decimal representation (or more generally, in any positional representation) of a number, after which no other digits follow.

In **5!** (120) there is one trailing zero, whereas in **11!** (39,916,800) has two trailing zeros.

We can calculate the number of trailing zeros, n , in the factorial of any number, x , by the formula

$$n = \frac{x}{5^1} + \frac{x}{5^2} + \frac{x}{5^3} + \cdots + \frac{x}{5^m} \quad (5^m < x)$$

Let us test 11!

$$n = \frac{11}{5^1} \quad (5^1 < 11)$$

$n = \frac{11}{5^1} = 2$ (So there are **two trailing zeros** in 11!)

Whereas in case of 26!

$$n = \frac{26}{\varepsilon^1} + \frac{26}{\varepsilon^2} (5^2 < 26)$$

$$n = \frac{26}{5^1} + \frac{26}{5^2} = 5 + 1 = 6 \text{ (So there are six trailing zeros in 26!)}$$

$$= 5 + 1 = \underline{\underline{6}}$$