

Factors and Multiples

A factor or a divisor d , of a non-zero integer x , divides x into f integers, without leaving any remainder. Mathematically,

$$x = fd \text{ (Where all } x, f, \text{ and } d \text{ are all integers.)}$$

$$26 = 2 \times 13$$

$$\frac{26}{2} = 13$$

All integers are factors of themselves.

$$\frac{26}{1} = \{1, 2, 13, 26\}$$

1 and -1 are factors of all integers.

$$\frac{26}{-1} = -26$$

0 can be divided by all integers, except by 0 itself.

$$\frac{0}{2} = 0 \quad \frac{0}{0} = \text{undefined}$$

0 divided by 0 is undefined.

If x is a factor of m and also a factor of n , then x is a factor of $(m + n)$. x is also a factor of $(ma + nb)$, where a and b are integers.

$$3 \overline{)15} \quad 3 \overline{)18}$$

$$\frac{15+18}{3} = \frac{33}{3} \quad \frac{15+18}{3} = \frac{33}{3} \quad \frac{120}{3} \checkmark$$

$$15(2) + 18(5) = 30 + 90$$

If x is a factor of y and y is a factor of z , then x must be a factor of z .

$$2 \rightarrow 6 \rightarrow 21, 120$$

$$\frac{-6}{6} = -1$$

If two integers x and y , are factors of each other, then either $x = y$, or $x = -y$.

$$\frac{6}{-6} = -1$$

If a prime number x is a factor of a product of two numbers a and b , then x is a factor of a or a factor of b .

$$\frac{35}{5} = \frac{7 \cdot 5}{5}$$

A Proper Divisor is an integer that divides any non-zero integer and is not equal to the integer itself.

For example, in case of 12, 1, 2, 3, 4, and 6 are proper divisors.

$$12 = (1, 2, 3, 4, 6, 12)$$

A Prime number has exactly two factors.

$$11 \rightarrow \{1, 11\}$$

1 is not prime

The number of factors of an integer can be found by using prime factorization. If a number, after prime factorization, is $p = x^a y^b z^c$, then the number of its factors is given by

$$(a+1)(b+1)(c+1).$$

For example: $720 = 2^4 3^2 5^1$, then 720 has $(4+1)(2+1)(1+1) = 30$ factors. Those 30 factors are $\{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720\}$

$$12 = 2^2 \cdot 3^1 \quad (2+1)(1+1) = 3 \times 2 = 6$$

$$12 \rightarrow \{1, 2, 3, 4, 6, 12\}$$

The sum of all factors of an integer, p , is given by the formula

$$S = \frac{(x^{a+1}-1)(y^{b+1}-1)(z^{c+1}-1)}{(x-1)(y-1)(z-1)}, \text{ where } p = x^a y^b z^c$$

$$12 = 2^2 3^1$$

For example: $180 = 2^2 3^2 5^1$, then the sum of all factors of 180 is equal to $S =$

$$\frac{(2^{2+1}-1)(3^{2+1}-1)(5^{1+1}-1)}{(2-1)(3-1)(5-1)} = \frac{(8-1)(27-1)(25-1)}{(1)(2)(4)} = \frac{4368}{8} = 546$$

$$S = \frac{(2^3-1)(3^2-1)}{(2-1)(3-1)} = \frac{7 \times 8}{2} = 28$$

$$\begin{aligned} x &= 2 \\ a &= 2 \\ y &= 3 \\ b &= 1 \end{aligned}$$

A Perfect Number is a positive integer that is the sum of all its proper factors. For example 6 is a perfect number as $6 = 1 + 2 + 3$, so is 28 as $28 = 1 + 2 + 4 + 7 + 14$

$$\begin{array}{ccccccc} & \uparrow & \cdot & \cdot & \cdot & \cdot & \cdot \\ & & & & & & \cdot \end{array}$$

EUCLID's FORMULA:

If $2^n - 1$ is a prime number, then $(2^n - 1)2^{n-1}$ is a Perfect Number.

Examples: $2^2 - 1$ is 3, a prime number, so $(2^2 - 1)2^{2-1} = 6$ is a perfect number and

$2^3 - 1$ is 7, a prime number, so $(2^3 - 1)2^{3-1} = 28$ is a perfect number.

2